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Abstract In this paper, a version of K-median problem, one of the most popular and
best studied clustering measures, is discussed. The model using squared Euclidean
distances terms to which the K-means algorithm has been successfully applied is
considered. A fast and robust algorithm based on DC (Difference of Convex func-
tions) programming and DC Algorithms (DCA) is investigated. Preliminary numer-
ical solutions on real-world databases show the efficiency and the superiority of the
appropriate DCA with respect to the standard K-means algorithm.
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1 Introduction

Clustering is a fundamental problem in unsupervized learning which has many appli-
cations in various domains. In recent years, there has been significant interest in
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developing clustering algorithms to the massive data sets ([1–17, 26–28, 34, 36, 40–43]
and reference therein). Two main approaches have been studied for clustering: the
first one is the statistical and machine learning based on learning mixture models
(see, e.g. [1, 2, 28, 34]) and the second is the mathematical programming approach
that considers clustering as an optimization problem (see, e.g. [3, 4, 26, 36, 41–43]).
The general term “clustering” covers many different types of problems. All consist of
subdividing a data set into groups of similar elements, but there are many measures
of similarity, many ways of measuring, and various concepts of subdivision.

An instance of the partitional clustering problem consists of a data set A :={
a1, . . . , am

}
of m points in IRn, a measured distance, and an integer k; we are to

choose k members x� (� = 1, . . . , k) (in A and/or IRn) as “centroid” (or “median”)
and assign each member of A to its closest centroid. The assignment distance of a point
a ∈ A is the distance from a to the centroid to which it is assigned, and the objective
function, which is to be minimized, is the sum of assignment distances. If the centroids
are not necessarily in A, then the problem can be formulated as a unconstrained
optimization problem. In the contrary case, we are faced with a discrete optimization
problem. In both cases, different objective functions corresponding to the distance
metric being considered are possible. Two models widely studied in the literature are
the cases where the points come from a real space IRn, and the assignment distance
of a point is defined as the squared Euclidean distance (2-norm), and/or the 1-norm.
If the squared Euclidean distance is used and the centroids are not necessarily in A,
then the corresponding optimization problem can be expressed as (‖.‖ denotes the
Euclidean norm)

min

{
m∑

i=1

min
�=1,...,k

∥
∥
∥x� − ai

∥
∥
∥

2
: x� ∈ IRn, � = 1, . . . , k

}

. (1.1)

If the 1-norm is considered instead of the squared Euclidean distance, then the prob-
lem can be written as

min

{∑m
i=1 min

�=1,...,k
eTDi� : −Di� ≤ x� − ai ≤ Di�,

Di�, x� ∈ IRn, � = 1, . . . , k, i = 1, . . . , m

}

, (1.2)

where Di� ∈ IRn is a dummy variable that bounds the components of the difference
x�−ai and e ∈ IRn denotes the vector of ones. Both (1.1) and (1.2) are nonsmooth non-
convex programs for which there are rarely efficient solution algorithms, especially in
the large scale setting.

Two most popular families of partitional clustering algorithms, namely the K-means
algorithm (see, e.g. [27, 36]) and the K-median algorithm (see [4, 28] and references
therein), have been introduced for solving (1.1) and (1.2), respectively. The K-median
algorithm is similar to the K-means algorithm in the description but they actually
differ from both theoretical and computational points of view. They are recognized
to be the most inexpensive and efficient method, especially for the large-scale setting.
Unfortunately neither the K-median algorithm nor the K-means algorithm guarantee
the global optimality of computed solutions.

We consider in this work the clustering problem corresponding to the model (1.1).
Our approach is based on Difference of Convex functions (DC) programming and
DC Algorithms (DCA) that were introduced by Pham Dinh Tao in their preliminary
form in 1985. They have been extensively developed since 1994 by Le Thi Hoai An
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and Pham Dinh Tao and become now classic and more and more popular (see, e.g.
[18–25, 29, 32, 33, 37–39, 44], and references therein). Constituting the backbone
of nonconvex programming and global optimization which have known very active
developments in the last decade, DC programming and DCA can be considered as
a natural and logical extension of Pham’s ealier works (1975–1984) on convex max-
imization programming and its subgradient algorithms (see, e.g. [18, 20, 30, 31] and
references therein). It is worth noting that the reference majorization algorithm devel-
oped by de Leeuw [7, 8] for solving the Euclidean MDS problem is a special case of the
above subgradient method. DCA has been successfully applied to many large-scale
(smooth or nonsmooth) nonconvex programs in various domains of applied sciences,
in particular in data analysis and data mining [20, 21, 23, 25, 27, 29, 37, 38, 39, 44],
for which it provided quite often a global solution and proved to be more robust and
efficient than standard methods (see [19–24, 29, 32, 33, 37–39] and references therein).

A so-called DC program is that of minimizing a DC function over a convex set.
According to the theory of DC programming, it is easy to show that all the clustering
problems models above displayed are DC programs. We then suggested using DC
programming approach and DCA to solve the clustering problem (1.1). Preliminary
numerical simulations on real-world databases [4, 10, 41–43] show the robustness, the
efficiency and the superiority of the appropriate DCA with respect to the K-means
algorithm.

The paper is organized as follows. After the introduction, the DC programming
and DCA are briefly presented in Sect. 2. Section 3 deals with a special realization
of DCA to the underlying clustering problem which is beforehand recast into the
well relevant matrix vector space. A combination of DCA with K-means algorithm
to find a good starting point for the main algorithm DCA is discussed in Sect. 4.
Computational results are reported in the last section.

2 A brief presentation of DC programming and DCA

To give the reader an easy understanding of the theory of DC programming and DCA
and our motivation to use them for solving Problem (1.1), we briefly outline these
tools in this section. Let �0(IRn) denote the convex cone of all lower semicontinu-
ous proper convex functions on IRn. The vector space of DC functions, DC(IRn) =
�0(IRn)− �0(IRn), is quite large to contain almost real life objective functions and is
closed under all the operations usually considered in optimization.

Consider the general DC program

α = inf{f (x) := g(x)− h(x) : x ∈ IRn} (Pdc)

with g, h ∈ �0 (IRn). Such a function f is called DC function, and g− h, DC decompo-
sition of f while the convex functions g and h are DC components of f .

If g or h are polyhedral convex functions then (Pdc) is called a polyhedral DC
program.

It should be noted that a constrained DC program whose feasible set C is convex
can always be transformed into an unconstrained DC program by adding the indicator
function χC of C (χC(x) = 0 if x ∈ C,+∞ otherwise) to the first DC component g.

Let

g∗(y) := sup{〈x, y〉 − g(x) : x ∈ IRn}
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be the conjugate function of g. By using the fact that every function h ∈ �0(IRn) is
characterized as a pointwise supremum of a collection of affine functions, say

h(x) := sup{〈x, y〉 − h∗(y) : y ∈ IRn},
we have

α = inf{g(x)− sup{〈x, y〉 − h∗(y) : y ∈ IRn} : x ∈ IRn} = inf{α(y) : y ∈ IRn}
with

α(y) := inf{g(x)− [〈x, y〉 − h∗(y)] : x ∈ IRn} (Py).

It is clear that (Py) is a convex program and

α(y) = h∗(y)− g∗(y) if y ∈ dom h∗, and +∞ otherwise. (2.1)

Finally we state the dual program of (Pdc)

α = inf{h∗(y)− g∗(y) : y ∈ dom h∗},
that is written, in virtue of the natural convention in DC programming, say +∞ −
(+∞) = +∞:

α = inf{h∗(y)− g∗(y) : y ∈ Y} (Ddc).

We observe the perfect symmetry between primal and dual DC programs: the dual to
(Ddc) is exactly (Pdc).

Recall that, for θ ∈ �0(IRn) and x0 ∈dom θ := {x ∈ IRn : θ(x0) < +∞}, ∂θ(x0)

denotes the subdifferential of θ at x0, i.e., [15, 35]

∂θ(x0) := {y ∈ IRn : θ(x) ≥ θ(x0)+ 〈x− x0, y〉,∀x ∈ IRn}. (2.2)

The subdifferential ∂θ(x0) is a closed convex set in IRn. It generalizes the derivative
in the sense that θ is differentiable at x0 if and only if ∂θ(x0) is reduced to a singleton
which is exactly { θ ′(x0)}.

DC programming investigates the structure of the vector space DC(IRn), DC dual-
ity and optimality conditions for DC programs. The complexity of DC programs
resides, of course, in the lack of practical optimal globality conditions. We developed
instead the following necessary local optimality conditions for DC programs in their
primal part, by symmetry their dual part is trivial (see [19–24, 32, 33] and references
therein):

∂h(x∗) ∩ ∂g(x∗) �= ∅ (2.3)

(such a point x∗ is called critical point of g− h or for (Pdc)), and

∅ �= ∂h(x∗) ⊂ ∂g(x∗). (2.4)

The condition (2.4) is also sufficient for many important classes of DC programs. In
particular it is sufficient for the next cases quite often encountered in practice:

• In polyhedral DC programs with h being a polyhedral convex function (see
[19–24, 32, 33] and references therein). In this case, if h is differentiable at a
critical point x∗, then x∗ is actually a local minimizer for (Pdc). Since a convex
function is differentiable everywhere except for a set of measure zero, one can say
that a critical point x∗ is almost always a local minimizer for (Pdc).

• In case the function f is locally convex at x∗ [22, 24].
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The transportation of global solutions between (Pdc) and (Ddc) is expressed by:

[∪y∗∈D ∂g∗(y∗)] ⊂ P , [∪x∗∈P ∂h(x∗)] ⊂ D (2.5)

where P and D denote the solution sets of (Pdc) and (Ddc), respectively. Under tech-
nical conditions, this transportation holds also for local solutions of (Pdc) and (Ddc)

[22, 24, 32].
Based on local optimality conditions and duality in DC programming, the DCA

consists in the construction of two sequences {xk} and {yk}, candidates to be opti-
mal solutions of primal and dual programs, respectively, such that the sequences
{g(xk)−h(xk)} and {h∗(yk)−g∗(yk)} are decreasing, and {xk} (resp. {yk}) converges to
a primal feasible solution x̃ (resp. a dual feasible solution ỹ) verifying local optimality
conditions and

x̃ ∈ ∂g∗(̃y), ỹ ∈ ∂h(̃x). (2.6)

These two sequences {xk} and {yk} are determined in the way that xk+1 (resp. yk) is a
solution to the convex program (Pk) (resp. (Dk)) defined by

inf{g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ IRn} (Pk)

inf{h∗(y)− g∗(yk−1)− 〈y− yk−1, xk〉 : y ∈ IRn} (Dk).

The first interpretation of DCA is simple: at each iteration one replaces in the pri-
mal DC program (Pdc) the second component h by its affine minorization hk(x) :=
h(xk)+ 〈x− xk, yk〉 at a neighborhood of xk to give birth to the convex program (Pk)

whose the solution set is nothing but ∂g∗(yk). Likewise, the second DC component
g∗ of the dual DC program (Ddc) is replaced by its affine minorization (g∗)k(y) :=
g∗(yk) + 〈y − yk, xk+1〉 at a neighborhood of yk to obtain the convex program (Dk)

whose ∂h(xk+1) is the solution set. DCA performs so a double linearization with the
help of the subgradients of h and g∗ and the DCA then yields the next scheme:

yk ∈ ∂h(xk); xk+1 ∈ ∂g∗(yk). (2.7)

First of all, it is worth noting that our works involve the convex DC components
g and h but not the DC function f itself. Moreover, a DC function f has infinitely
many DC decompositions which have crucial impacts on the qualities (speed of con-
vergence, robustness, efficiency, globality of computed solutions,...) of DCA. For a
given DC program, the choice of optimal DC decompositions is still open. Of course,
this depends strongly on the very specific structure of the problem being considered.
In order to tackle the large scale setting, one tries in practice to choose g and h such
that sequences {xk} and {yk} can be easily calculated, i.e. either they are in explicit
form or their computations are inexpensive.

We mention now the main convergence properties of DCA [19–24, 32, 33]. In this
paragraph, denote by C (resp. D) a convex set containing the sequence {xk} (resp.
{yk}) and ρ(g, C) (or ρ(g) if C = IRn) the modulus of strong convexity of g on C given
by:

ρ(g, C) = sup{ρ ≥ 0 : g− (ρ/2)‖ · ‖2 be convex on C}.
DCAs convergence properties [19–24, 32, 33]. DCA is a descent method without
linesearch which enjoys the following properties:
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(i) The sequences {g(xk)− h(xk)} and {h∗(yk)− g∗(yk)} are decreasing and

• g(xk+1)− h(xk+1) = g(xk)− h(xk) iff yk ∈ ∂g(xk) ∩ ∂h(xk), yk ∈ ∂g(xk+1) ∩
∂h(xk+1) and [ρ(g, C) + ρ(h, C)]‖xk+1 − xk‖ = 0. Moreover if g or h are
strictly convex on C then xk = xk+1.
In such a case DCA terminates at the kth iteration (finite convergence of
DCA);

• h∗(yk+1)− g∗(yk+1) = h∗(yk)− g∗(yk) iff xk+1 ∈ ∂g∗(yk) ∩ ∂h∗(yk), xk+1 ∈
∂g∗(yk+1)∩ ∂h∗(yk+1) and [ρ(g∗, D)+ ρ(h∗, D)]‖yk+1− yk‖ = 0. Moreover
if g∗ or h∗ are strictly convex on D, then yk+1 = yk.
In such a case DCA terminates at the kth iteration (finite convergence of
DCA).

(ii) If ρ(g, C)+ρ(h, C) > 0 (resp. ρ(g∗, D)+ρ(h∗, D) > 0)) then the series {‖xk+1−
xk‖2 (resp. {‖yk+1 − yk‖2} converges.

(iii) If the optimal value α of problem (Pdc) is finite and the infinite sequences {xk}
and {yk} are bounded then every limit point x̃ (resp. ỹ) of the sequence {xk}
(resp. {yk}) is a critical point of g−−h (resp. h∗ − g∗).

(iv) DCA has a linear convergence for general DC programs.
(v) DCA has a finite convergence for polyhedral DC programs.

Before closing this outline of DCA, it is crucial to keep in mind the second inter-
pretation of DCA:

Let x∗ be an optimal solution of primal DC program (Pdc) and y∗ ∈ ∂h(x∗). In
virtue of (2.5) y∗ is an optimal solution of the dual DC program (Ddc). Let h∗ be the
affine minorization of h defined by

h∗(x) := h(x∗)+ 〈x− x∗, y∗〉
and consider the next convex program

α∗ := inf{g(x)− h∗(x) : IRn} = inf{f (x)+ h(x)− h∗(x) : x ∈ IRn}. (2.8)

Since the function f∗(x) = f (x) + h(x) − h∗(x) is a convex majorization of f , α∗ ≥ α.
But f∗(x∗) = f (x∗) = α. Hence α∗ = α. On the other hand, the optimal solution set
of (2.8) is ∂g∗(y∗) that is contained in the optimal solution set P of (Pdc), following
(2.5). Taking into account of (2.5) and the decrease of the sequence {g(xk) − h(xk)},
one can understand better the role played by the linearized programs (Pk) and (2.8)
and explain partially the reason why DCA converges to an optimal solution of (Pdc)

from a good initial point.
For a complete study of DC programming and DCA the reader is referred to

[19–24, 32, 33] and references therein. The solution of a nonconvex program by DCA
must be composed of two stages: the search for an appropriate DC decomposition
and that for a good initial point. We shall apply all these DC enhancement features to
solve problem (1) in its equivalent DC program given in the next section.

3 Solving the clustering problem (1.1) by DCA

To simplify related computations in DCA for solving problem (1.1) it is crucial, as will
be seen, in the next to recast this problem in the matrix vector space IRk×n of (k× n)
real matrices. The variables are then X ∈ IRk×n whose ith row Xi is equal to xi for
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i = 1, . . . , k. The Euclidean structure of IRk×n is defined with the help of the usual
scalar product

IRk×n � X ←→ (X1, X2, . . . , Xk) ∈ (IRn)k, Xi ∈ IRn (i = 1, . . . , k),

〈X, Y〉 := Tr(XTY) =
k∑

i=1

〈Xi, Yi〉

and its Euclidean norm ‖X‖2 :=∑k
i=1〈Xi, Xi〉 =∑k

i=1 ‖Xi‖2 (Tr denotes the trace of
a square matrix). We will reformulate problem (1.1) as a DC program in the matrix
space IRk×n and then describe DCA for solving it.

3.1 Formulation of (1.1) as a DC program

According to the property

min
�=1,...,k

∥
∥
∥x� − ai

∥
∥
∥

2 =
k∑

�=1

∥
∥
∥x� − ai

∥
∥
∥

2 − max
r=1,...,k

∑

�=1,��=r

∥
∥
∥x� − ai

∥
∥
∥

2
,

and the convexity of the functions

k∑

�=1

∥
∥
∥x� − ai

∥
∥
∥

2
, max

r=1,...,k

∑

�=1,��=r

∥
∥
∥x� − ai

∥
∥
∥

2
,

we can say that clustering problem (1.1) is a DC program.
We can advantageously express (1.1) in the matrix space IRk×n as follows:

(1.1)⇔ min {F(X) := G(X)−H(X) : X ∈ IRk×n}, (3.1)

where the DC components G and H are given by

G(X) =
m∑

i=1

k∑

�=1

Gi�(X), Gi�(X) = 1
2

∥
∥X� − ai∥∥2 for i = 1, . . . , m, � = 1, . . . , k

(3.2)

and

H(X) =
m∑

i=1

Hi(X), Hi(X) = max
j=1,...,k

k∑

�=1,��=j

1
2

∥
∥X� − ai∥∥2 for i = 1, . . . , m. (3.3)

It is interesting to note that the function G is a strictly convex quadratic form. More
precisely we have, after simple calculations:

G(X) = m
2
‖X‖2 − 〈B, X〉 + k

2
‖A‖2 , (3.4)

where A ∈ IRm×n, B ∈ IRk×n are given by

Ai := ai for i = 1, . . . , m,

B� := a =
m∑

i=1

ai for � = 1, . . . , k. (3.5)
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Remark 3.1 In the matrix space IRk×n, the DC program (3.1) then is minimizing the
difference of the simplest convex quadratic function (3.4) and the nonsmooth convex
one (3.3). This nice feature is very convenient for applying DCA, which consists in
solving a sequence of approximate convex quadratic programs whose solutions are
explicit.

According to Sect. 2, determining the DCA scheme applied to (3.1) amounts to
computing the two sequences {X(p)} and {Y(p)} in IRk×n such that

Y(p) ∈ ∂H(X(p)), X(p+1) ∈ ∂G∗(Y(p)).

We shall present below the computation of ∂H(X) and ∂G∗(Y).

3.2 Calculation of ∂H(X)

We can write, for i = 1, . . . , m :

Hi(X) = max
j=1,...,k

Hij(X) where Hij(X) :=
k∑

�=1,��=j

1
2

∥
∥X� − ai∥∥2 for j = 1, . . . , k.

Let Ki(X) := {j = 1, . . . , k : Hij(X) = Hi(X)}. Then we have [15]:

∂Hi(X) = co{∪j∈Ki(X)∂Hij(X)}, (3.6)

where co stands for the convex hull. Let now L�i be the convex function on IRk×n

defined by

L�i(X) := 1
2

∥
∥X� − ai∥∥2 .

So Hij =∑k
�=1,��=j L�i, and L�i is differentiable with (for r = 1, . . . , k)

[∇L�i(X)]r = X� − ai if r = �, 0 otherwise.

It follows that for r = 1, . . . , k

[∇Hij(X)]r =
k∑

�=1,��=j

[∇L�i(X)]r = 0 if r = j, Xr − ai . (3.7)

The calculation of ∂H(X) is then immediate from the relations (3.6), (3.7) and

∂H(X) =
m∑

i=1

∂Hi(X). (3.8)

But from the computational point of view, the formula (3.7) makes the summation
(3.8) cumbersome. We use instead another formula as follows:

We first express the convex function Hij by

Hij(X) =
k∑

�=1

1
2

∥
∥X� − ai∥∥2 − 1

2

∥
∥Xj − ai∥∥2

= 1
2

∥
∥
∥X −A[i]

∥
∥
∥

2 − 1
2

∥
∥Xj − ai∥∥2 , (3.9)

where A[i] ∈ IRk×n is the matrix whose rows are all equal to ai.
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That gives

∇Hij(X) = X −A[i] − e[k]j (Xj − ai) (3.10)

with {e[k]j : j = 1, . . . , k} being the canonical basis of IRk.
Hence, according to (3.6) and (3.8) we get the following simpler matrix formula for

computing ∂H

Y ∈ ∂H(X)⇔ Y =
m∑

i=1

Y[i] with Y[i] ∈ ∂Hi(X) for i = 1, . . . , k, (3.11)

where Y[i] is a convex combination of {∇Hij(X) : j ∈ Ki(X)}, i.e.,

Y[i] =
∑

j∈Ki(X)

λ
[i]
j ∇Hij(X) with λ[i]j ≥ 0 for j ∈ Ki(X) and

∑

j∈Ki(X)

λ
[i]
j = 1.(3.12)

In other words with the help of (3.10)

Y[i] = X −A[i] −
∑

j∈Ki(X)

λ
[i]
j e[k]j (Xj − ai). (3.13)

Finally Y ∈ ∂H(X) if and only if

Y = mX − B−
m∑

i=1

∑

j∈Ki(X)

λ
[i]
j e[k]j (Xj − ai), (3.14)

where B =∑m
i=1 A[i] is already defined in (3.5).

In particular we can take for i = 1, . . . , m

Y[i] = X −A[i] − e[k]j(i)(Xj(i) − ai) for some j(i) ∈ Ki(X) (3.15)

and the corresponding Y ∈ ∂H(X) defined by

Y = mX − B−
m∑

i=1

e[k]j(i)(Xj(i) − ai). (3.16)

3.3 Calculation of ∂G∗(Y)

Since the function G is strictly convex quadratic, its conjugate G∗ is differentiable and
we have from (3.4)

X = ∇G∗(Y)⇐⇒ Y = ∇G(X) = mX − B

or again

X = 1
m
(B+ Y). (3.17)

Remark 3.2 According to (2.7) and the explicit calculations (3.14) and (3.17) of the
subdifferentials ∂H and ∂G∗ in the DC program (3.1), the sequences

{
X(p)

}
and{

Y(p)
}

generated by DCA are explicitly computed.

We are now in a position to describe the DCA for solving problem(1.1) via the DC
decomposition (3.1).
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3.4 Description of DCA to solve the clustering problem (1.1)

Initialization: Let ε > 0 be given, X(0) be an initial point in IRk×n, set p := 0;
Repeat

Calculate Y(p) ∈ ∂H(X(p)) by using (3.14)

Y(p) = mX(p) − B−
m∑

i=1

∑

j∈Ki(X(p))

λ
[i]
j e[k]j (X(p)

j − ai)

with λ[i]j ≥ 0 for j ∈ Ki(X(p)) and
∑

j∈Ki(X(p))

λ
[i]
j = 1, (3.18)

and calculate X(p+1) according to (3.17)

X(p+1) := X(p) − 1
m

m∑

i=1

∑

j∈Ki(X(p))

λ
[i]
j e[k]j (X(p)

j − ai). (3.19)

Set p+ 1← p
until ‖X(p+1) −X(p)‖ ≤ ε(‖X(p)‖ + 1) or

∣
∣F(X(p+1))− F(X(p))

∣
∣ ≤ ε (∣∣F(X(p))

∣
∣+ 1

)
.

Remark 3.3 The DC decomposition (3.1) gives birth to a very simple DCA. It requires
only elementary operations on matrices (the sum and the scalar multiplication of
matrices) and can so handle large-scale clustering problems.

4 A combined K-means-DCA procedure for initializing DCA

We are now interested in the second question while using DCA: find a good starting
point for the algorithm?

Like the K-means algorithm, we can randomly choose X(0)
i among the points

ai. Nevertheless it is known that the performance of the K-means algorithm much
depends on the initial point. For exploiting simultaneously the efficiency of DCA and
the K-means algorithm we combine alternatively the two procedures. More precisely,
starting with a point X(0) with X(0)

i randomly chosen among the points ai we perform
one iteration of DCA, namely set Y(0) ∈ ∂H(X(0)) and Z(1) ∈ ∂G∗(Y(0)), and then
improve Z(1) by one iteration of K-means to obtain X(1). This procedure can be then
repeated some times to provide a good initial point for the main DCA as will be
shown in numerical simulations.

K-means [27] is one of the simplest unsupervised learning algorithms for the clus-
tering problem. Starting with k points randomly chosen as centroids among the given
set of points, each iteration of the algorithm is composed of two steps:

• Assign each point ai to the group π� that has the closest centroid.
• When all points have been assigned, recalculate the positions of the k centroids.

Repeat these two steps until the centroids no longer move.
The combined K-means—DCA procedure, denoted KMDCA, to finding a good

initial point for the main DCA can be then described as follows:
Procedure KMDCA. let q be a positive integer.
Let X(0) ∈ IRk×n such that X(0)

i is randomly chosen among the points of A =
{a1, . . . , am}
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For t = 0, 1, . . . , q do
t1. Compute Y(t) by (3.18) and X(t+1) by (3.19)
t2. Assign each point ai ∈ A into the group that has the closest centroid X(t+1)

S(ai) :

let S(ai) := arg min
�∈{1,...,k}

∥
∥
∥X(t+1)

� − ai
∥
∥
∥

2
and then assign ai to πS(ai).

t3. For each � ∈ {1, . . . , k} recompute Z� as the centroids of the group π� :=
{ai : S(ai) = �}, i.e.,

Z� := arg min






∑

ai∈π�

∥
∥x− ai∥∥2 : x ∈ IRn





.

Update X(t+1)
� := Z� for � = 1, . . . k.

enddo
Ouput: set X(0) := X(q).

From the numerical experiments we see that it suffices to take q = 2 for obtaining
a very good starting point for DCA. We also note that the alternative KMDCA proce-
dure is better than the combination of the complete K-means (until the convergence)
and DCA.

5 Numerical experiments

Our algorithms are coded in C++, and run on a Pentium 2.930 GHz of 1024 DDRAM
with the following choice of subgradients for computing the sequences {X(p)}, {Y(p)}
generated by DCA:

(i) In the description of DCA for solving (1.1) we use (3.16) for (3.18) and the
corresponding X(p+1) given by

X(p+1) := X(p) − 1
m

m∑

i=1

e[k]j(i)(X
(p)
j(i) − ai). (5.1)

where j(i) ∈ Ki(X(p)) for i = 1, . . . , m.
(ii) The same formulas are used in (t1) of the procedure KMDCA.

We have tested our code on two sets of data. The first is composed of ten problems
among them the first seven ones are given in [4, 41, 42, 43]), and the problems 8, 9, 10
are randomly generated. The second set contains four problems with real data.

• “PAPILLON” is a well known dataset called “jeux de papillon”. Several works
of clustering have discussed this dataset (see Revue Modulad - Le MOnde Des
Utilisateurs de L’Analyse de Données, numéro 11, 7–44, 1993).

• “IRIS” is the IRIS dataset which is perhaps the best known dataset found in
pattern recognition literature. The dataset consists of three classes, 50 instances
each and 4 numeric attributes where each class refers to a type of iris plant namely
Iris Setosa, Iris Versicolor, Iris Verginica. The first class is linearly separable from
others while that latter are not linearly separable. The measurement consists of
the sepal and petal lengths and widths in cms.

• “GENE” is a Gene Expression dataset containing 384 genes that we get from
http://faculty.washington.edu/kayee/cluster/
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• “VOTE” is the Congressional Votes dataset (Congressional Quarterly Almanac,
98th Congress, 2nd session 1984, Volume XL: Congressional Quarterly Inc. Wash-
ington, DC, 1985) consists of the votes for each of the U.S. House of Representative
Congressmen, for 16 key votes, on different subjects (handicap, religion, immigra-
tion, army, education, . . .). For each vote, three answers are possible: yes, nay, and
unknown. The individuals are separated into two clusters: democrats (267) and
republicans (168).

• “ADN” is the ADN dataset (ftp://genbank.bio.net) that consists of 3186 genes,
described by 60 DNA sequence elements, called nucleotides or base pairs, with 4
possible categories (A, C, G or T). These genes are distributed into three different
clusters: “intron→ exon” or ie (sometimes called donors, 767 objects), “exon→
intron” or ei (sometimes called acceptors, 765 objects), and neither, noted as n
objects).

For the last two sets of data (“VOTE” and “ADN”) we first transform the data by
using the Chi-square metric. Consider a species abundance data table Y = [yij] of size
(n × p) with sites (rows) i = {1, . . . , n} and species (columns) j = {1, . . . , p}; the row
sums are noted yi+ and the column sums y+j. The formula for the Chi-square metric
between sites x1 and x2 across the p species is thus given by:

Dχ2metric(x1, x2) =
√√
√
√

p∑

j=1

1
y+j

(
y1j

y1+
− y2j

y2+

)2

.

If the data [yij] are transformed into [y′ij] as y′ij =
yij

yi+√y+j
, then the Euclidean distance

between row vectors of transformed data is identical to the Chi-square metric.
In Tables 1 and 2, we present the comparative numerical results provided by our

algorithms and K-means which is available on the web site: http://www.bio.umontre-
al.ca/legendre/index.html. The results of the first set of data are reported in Table
1 while those of the real data are presented in Table 2. We considered two ver-
sions of the main DCA which differ from the initialization procedures: DCA with a
randomly chosen starting point in the set A (denoted DCA1), and DCA with Proce-
dure KMDCA (with q = 2) in the step initialization (denoted DCA2). Here “iter”and

Table 1 The performance of DCA1 and DCA2 and K-means for the first set of data

Data K-means DCA1 DCA2

m n k Iter CPU Objval Iter CPU Objval Iter CPU Objval

1 88 7 4 12 0.02 21023.26 14 0.01 17686.21 6 0.00 17516.82
2 70 11 4 9 0.22 9107× 1010 9 0.01 2321× 109 3 0.01 6684× 108

3 284 11 6 7 0.18 1575× 1010 11 0.03 5239× 109 4 0.00 2559× 109

4 354 11 7 8 0.61 8603× 1010 9 0.01 7573× 109 4 0.00 1666× 109

5 853 4 8 19 1.03 1221× 105 50 0.37 7067× 103 8 0.01 2948× 103

6 1123 8 12 26 2.03 1203.11 29 1.19 1041.85 8 0.33 989.47
7 200 30 5 13 0.81 613.11 16 0.06 400.92 9 0.05 392.04
8 3500 6 5 14 1.49 7533.11 23 1.55 5112.13 6 0.15 4982.10
9 8516 5 11 38 13.02 98110 45 5.12 65802.50 9 1.91 64782.96

10 11856 4 18 22 9.66 71210 37 6.11 49100 10 1.98 8032
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“objval” denote, respectively, the number of iterations and the objective value while
“PMO” means the percentage of misclassified objects (for the real data in Table 2).
All CPU are computed in seconds.

From the numerical experiments we observe that

• Both DCA1 and DCA2 are better than K-means: the objective values given by
DCA1 and DCA2 are much smaller than that computed by K-means.

• DCA2 is the best among the three algorithms: it provides the best solution with
the shortest time. DCA2 is very fast and can then handle large-scale problems.

• DCA is very efficient for real data: for “PAPILLON” dataset, all objects are well
classified - DCA gives exactly the right clustering; for IRIS dataset only one ele-
ment is misclassified; likewise, for all other datasets the percentage of misclassified
objects is small.

6 Conclusion

We have proposed, for solving a clustering problem with the squared Euclidean
distance, a new and efficient approach based on DC programming and DCA. The
considered clustering problem has been recast as a DC program in its elegant matrix
formulation and with a natural choice of DC decomposition, in order to make simpler
and so much less expensive the computations in the resulting DCA. It fortunately
turns out that the DC program (1.1) is minimizing the difference of the simplest con-
vex quadratic function (3.4) and the nonsmooth convex one (3.3). This nice feature is
very relevant for applying DCA, which consists in solving a sequence of approximate
convex quadratic programs whose solutions are explicit. The DCA requires only sums
and scalar multiplications of matrices. An interesting procedure that combined DCA
and K-means is introduced for initializing DCA. Preliminary numerical simulations
on real world database show the robustness, the efficiency and the superiority of
DCA with respect to the K-means on the quality of computed solutions. Concerning
the running time, their difference is negligible, moreover it is possible to better still
improve the explicit computations in DCA in order to make them still further less
time-consuming. The efficiency of DCA for this problem suggests to us investigating
it in the solution of other models of clustering problems as well as multi-hierarchical
clustering. Works in these directions are in progress.
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